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Chapter 2. THEORY 

The modeling concepts and terminology described in the this section have been more 
thoroughly described by Cooley (2004) and Christensen and Cooley (2003). 

A ground-water flow system can be characterised by hydrogeologic variables (termed 
system characteristics) such as hydraulic head, hydraulic conductivity, recharge, discharge, 
hydraulic heads and fluxes along internal and external boundaries, and point sources and sinks. 
In a model these system characteristics can be conceptualized as being discretely variable (in 
space and/or time) because discrete variation can be at as small a scale as desired (depending 
only on model discretization), allowing it to be virtually the same as continuous variation. All of 
these system characteristics can be assembled into an m-vector β. Because β includes all scales 
of variation necessary to construct an accurate model, any model function of β is almost free of 
model error, assuming that the model accurately represents the physical processes. 

Seen from a practical modeling perspective, vector β represents small-scale variability 
that cannot be explicitly represented in a model and larger scale variability (the drift) that can. In 
addition, vector β is unknown. Because β has much too large a dimension to be estimated from a 
small number of uncertain observations, the vector of model parameters to be estimated is 
reduced from one of large dimension, β, to one of much smaller dimension, . The p-vector 

represents the spatial and temporal average of β and has the same form as the drift 
*θ

*θ θ ; it does 
not represent the small-scale variation. A model function f(β), which contains large- and small-
scale variation from β, is represented in terms of as *θ ( )*γθf , where γ is an  interpolation 
or averaging matrix.  

pm ×

In ground-water modeling we are interested in estimating  rather than *θ θ  because  
characterizes the actual realization β. An estimate of ,  can be found by minimizing 

*θ
*θ ,θ̂

 
 ( ) ( ))()()( γθfYωγθfYθ −′−=S ,  (1) 
 
where Y is an n-vector of observations (m>>n>p), ( )γθf  is the corresponding n-vector of values 
simulated using general vector γθ instead of β, ω is an nn ×  weight matrix, and the prime 
indicates transpose. 

Predictions can be made with the ground-water model. In practice, variables of interest 
g(β) are predicted by  ).ˆ( θγg

Different types of observations, Y, can be used in the Parameter Estimation Process. 
Cooley (2004) does not distinguish among the several possible types of observations such as 
hydraulic heads, measured streamflow gains and losses, measured spring and well discharges, 
and measured direct (often called “prior”) information on model parameters. It is convenient to 
divide the types of information into two groups: (1) measured direct observations of parameters 
or linear combinations of them and (2) observations corresponding to model functions of the 
parameters such as hydraulic heads and fluxes. The various matrices and vectors pertaining to 
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observations have a subscript d for the partition of direct information and a subscript m for the 
partition for model-function information. Corresponding to this notation, the number of direct 
observations is designated nd and the number of model-function observations is designated nm, for 
a total of nd+nm=n observations. The matrices and vectors are used in the partitioned form in an 
equation only when the form of the result for each partition is different. The difference is caused 
by the forms of the observation second-moment matrix, , and 
the weight matrix, , used as an approximation for  in the weighted regression analysis. As 
in standard regression analysis,  is a generally unknown scalar multiplier that is estimated by 
the regression. We assume that the partition of the observation second-moment matrix for the 
model functions depends on an unknown model error and often may not be known, but that the 
partition for the direct information would be well estimated using the same techniques used to 
acquire the direct information. We also assume that the two partitions are not correlated. (This is 
a standard assumption dating back to Theil (1963). Should it prove to be inaccurate in any 
application, the correction factors computed by CORFAC-2k will be somewhat in error. If 
n

))())((( ′−−=σε **
2 γθfYγθfYΩ E

ω 1−Ω
2
εσ

d<<nm, the errors should be small.) Thus, the forms for Ω  and  are ω
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where 0 is a matrix of zeros, and 

 

  (3) 
 

The partitioning also can be used for the n×n matrix R defined as 
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in which Df is the n×p sensitivity matrix of derivatives of f with respect to , θ
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theoretically evaluated at the drift set of parameters ( )*θθ E= , and 
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where  fm and fd are model-function and direct-information partitions of f, and D(…) is the 
derivative operator applied as in equation 5 to yield the nm×p and the nd×p matrices Dfm and Dfd. 
Similar partitioning is used for the n-vector Q, defined as 
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where [ igg θ∂∂=′D ]

)

 is the column p-vector of sensitivities of the prediction  ).(γθg
The UNC Process described in ‘The UNC Process’ section can be used to compute 

confidence or prediction intervals for parameters (θ ) of the Parameter-Estimation Process, and 
for most types of predictions (  or g(β)+ε  where ε  is a random observation error) that can 
be computed by a MODFLOW-2000 model calibrated by the Parameter-Estimation Process. The 
programs RESAN2-2k, BEALE2-2k, and CORFAC-2k that also are described in this report are 
valuable in the evaluation of results from the Parameter-Estimation Process and in the 
preparation of input values for UNC. 

ˆ
)( *γθg

The UNC Process 

The purpose of UNC is to compute confidence and prediction intervals for variables of 
the form . Both the model functions ( *γθg ( )*γθf  and predictions ( )*γθg  can be nonlinear, and 
the intervals can be individual, Scheffé type, or, with correction factors not given in this report, 
other simultaneous types (Hill, 1994, p. 26-33). Calculation procedures are the same for all types 
of confidence intervals and for all types of prediction intervals; only the critical values described 
after equation 8 are different. Extensive information on the theory, calculation procedures, and 
use of confidence and prediction intervals can be found in Graybill (1976, chapters 6-10), Seber 
and Wild (1989, chapter 5), Hill (1994, p. 26-37), Cooley and Vecchia (1987), Vecchia and 
Cooley (1987), Cooley (1997), Christensen and Cooley (1999a, b), Cooley and Naff (1990, 
chapter 5), and Cooley (2004). Cooley (2004) summarizes much of the information found in the 
other references. 

Confidence Intervals 

A confidence interval for  is defined by two confidence limits, the maximum and 
minimum values of  over a likelihood region. The definition of the region depends on the 
type of confidence interval being computed. For example, for a Scheffé interval the likelihood 

( *γθg )
( )γθg
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region is the standard confidence region given in terms of ( )θ̂S , and for an individual confidence 
interval the likelihood region is of the same form but has a smaller diameter (Cooley, 2004,  
p. 53). If we assume that the maximum and minimum values of ( )γθg  occur on the boundary of 
the likelihood region as they do for linear problems, then these extreme values can be found 
using the method of Lagrange multipliers (Vecchia and Cooley, 1987). Cooley (1999, p. 118) 
states that this assumption is almost non-restrictive; the assumption has never been violated in 
any of the calculations made by the authors of this report. Therefore, confidence and prediction 
intervals computed by the UNC Process are based on the method of Lagrange multipliers. 

A  percent confidence interval is computed by finding extreme values (the 
confidence limits) of the Lagrange function 

( ) 100α1 ×−

 

                     ( ) ( ) ( ) ( )( )θθγθθ ˆ
λ2

1λ, 2
α SSdgL +−+= , (8) 

 
where λ-1 is the Lagrange multiplier and  is the critical value that depends on the type of 
confidence interval being computed. For an individual confidence interval 

2
αd

( ) ( )pnStcd c −= θ̂2
2/α

2
α  and for a Scheffé interval ( ) ( ) ( )pnSpnpFcd r −−= αα θ̂,2 . Here cc and 

cr are correction factors defined in ‘The RESAN2-2k Program’ section,  is the 2/αt ( ) 1002α1 ×−  
percentile of the cumulative t distribution, ( )pnpF −α ,  is the upper α point of the F distribution 
with p and n − p degrees of freedom, p is the number of model parameters, and n is the total 
number of observations used to estimate . Theoretically, the equations to compute extreme 
values are obtained simply by taking the derivatives of 

θ̂
( )λ,θL  with respect to θ  and λ-1, then 

setting the results to zero. However, this yields a set of nonlinear equations to be solved 
whenever  or  (or both) are nonlinear. Another method was developed by Vecchia 
and Cooley (1987) and involves linearizing the nonlinear functions 

( )γθg ( )γθf
( )γθg  and (or)  first, 

then taking the derivatives of  and setting the results to zero. The resulting linear system 
of equations then can be written to yield an iterative solution to the nonlinear problem. The 
iterative solution is derived in appendix A; the solution  at iteration r+1 is given in terms of 
quantities computed at iteration r as 

( )γθf
( λ,θL )

1+rθ
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γθfYωRωγθfYθθ
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and 
 

( ) ( ) ( )( ),λ 11
11 rrrrrrrrrr g γθfYωfDωDffDDωDffDθθ −′′+′′+= −−

++  (10) 

where subscript r indicates evaluation using parameter set  and  is the initial, user supplied, 
set. Use of the positive sign in equation 9 yields the maximum and use of the negative sign yields 

rθ 0θ
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the minimum. At convergence of the process θθθ ~
1 ≈≈ +rr , the set of parameters defining either 

limit ( )θγ~g .  
To control round-off errors resulting from large variations in magnitude of the elements 

of  and to put equation 10 into a form for the Marquardt-like solution scheme 
developed by Vecchia and Cooley (1987), Df

rrωDffD ′

r, Dgr, , and  need to be scaled. Let Arθ 1+rθ r be a 
diagonal matrix composed of the square roots of the inverses of the diagonal elements of 

. Then let rrωDffD ′
 
 rrr ADfS = , (11) 
 
 rrr g′= DAZ , (12) 
 

and 
 

 ( )rrrr θθAd −= +
−

+ 1
1

1 . (13) 

With the above scaled matrix and vectors, equation 10 transforms to 

 ( ) ( ) ( )( )rrrrrr γθfYωSωSSZωSSd −′′+′= −−
++

11
11 λ rrr . (14) 

Note that Qr and Rr in equation 9 are invariant under the scaling used for equations 11 and 12, so 
can be written in terms of Sr and Zr. 

Vecchia and Cooley (1987) found that a Marquardt-like modification (Seber and Wild, 
1989, p. 624) of equation 14 often was effective for solving ill-conditioned problems. We have 
used numerous tests to confirm this finding. The modification is simply to add μr+1I to rωSSr′  in 
equation 14 to obtain 

 
( ) ( ) ( )( )rrrrrrrrr γθfYωSIωSSZIωSSd rr −′+′++′= −

+
−

+++
1

1
1

111 μμλ , (15) 
 

where μr+1 is a parameter obtained using the algorithm given by Cooley and Naff (1990, p. 71-
72). 

Another modification involves damping of the parameter displacement vector dr+1. This 
often is necessary to achieve convergence because dr+1 is frequently too large (Cooley and 
Vecchia, 1987). Thus, parameter set  is computed using a damped form of equation 13: 1+rθ

 
 rrrrr θdAθ +ρ= +++ 111 . (16) 
 
Damping parameter ρr+1 is computed using the algorithm given by Cooley (1993c, p. 2-3) except 
that tr+1 used by that algorithm is defined in the present report as the value of sj

r
j θδ 1+  for which 

sj
r
jjrt θδmax 1

1
+

+ = , where  is an element of ,  is an element of  , and  is a 1+δr
j 1+rrdA sjθ sθ sθ
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user-supplied scaling vector. The scaling vector adjusts for differing sizes of elements of , so 
should reflect the user’s best knowledge of , except that no element of  can be zero. 

θ
*θ sθ

We consider the iteration scheme to have converged if either 1+rt  or 
( ) ( ) ( ) ( ) ( ) ( )111 −−+ −+− rrrrrr SSSSSS θθθθθθ  is small enough. The convergence criteria for 

1+rt  and ( ) ( ) ( ) ( ) ( ) ( )111 −−+ −+− rrrrrr SSSSSS θθθθθθ  are user supplied. Another test that 
overrides the above two also is used, if specified by the user. Sometimes  can stabilize 
even though one or more elements of  have not converged. To address this case the user can 
specify that the process has converged whenever 

( 1+rg γθ )
θ

( ) ( )( ) ( ) ( )( )rrrr gggg γθγθγθγθ +−× ++ 112  is 
smaller than another user-supplied criterion. This criterion is not used when 

( ) ( )( ) .10 12
1

−
+ <+ rr gg γθγθ  

Weighted Residuals 

Cooley (2004, p. 56-57) showed that weighted residuals from a regression constrained so 
that ( ) ( * )~ γθθγ gg =  (where θ~  is the constrained regression estimate) can be defined as 
( ) ( )( θγfYωQQQQI )~21 −′′−  and are equal to weighted residuals ( )( )θγfYω ˆ21 −  from the 
unconstrained regression if model intrinsic nonlinearity and model combined intrinsic 
nonlinearity as defined by Cooley (2004, p. 35-36) both are small. Parameter set θ~  can be the 
set computed for either confidence limit because minimization of ( )θS , subject to the constraint 

, is the same as finding an extreme value of ( ) ( )*γθγθ gg = ( )γθg , subject to the constraint 
( ) ( ) 2ˆ

α=− dSS θθ , if  assumed for the constrained regression is the confidence limit for 
 computed using . Thus, the constrained weighted residuals for both confidence limits 

for  are computed and printed if specified by the user. Vector Q is computed using the 
initial set of parameters  because if θ

( *γθg )
)

)
( *γθg 2

αd
( *γθg

0θ
~

 were used, the term in ( ) ( )( )θγfYωQQQQI ~21 −′′−  
expressing model combined intrinsic nonlinearity, that is ( ) ( )( )θγfYωQQQQR ~21 −′′− , always 
would be zero, as shown in appendix B. 

Prediction Intervals 

As for a confidence interval, a prediction interval for a predicted observation of g(ß), Yp, 
is defined by two limits, the maximum and minimum values of ( ) vg +γθ  over a likelihood 
region, where v is the predicted error (Cooley, 2004, p. 59-60). The form of the likelihood region 
is developed in Cooley (2004, p. 61) and the prediction limits are assumed to lie on the edge of 
the likelihood region so that the method of Lagrange multipliers can again be used to find the 
extreme values. To obtain the Lagrange function we assume that the weight matrix incorporating 
the prediction,  of Cooley (2004, p. 63), is block diagonal of the form aω

 

  (17) ⎥
⎦

⎤
⎢
⎣

⎡
=

p
a ω0

0ω
ω
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as described by Cooley (2004, p. 63). In equation 17, ωp is the weight for the prediction that is 
analogous to diagonal elements of ω . The form given by equation 17 not only simplifies 
calculations, but also does not require the user to estimate second moments between observations 
and the prediction, which often would be unknown. However, if such second moments actually 
exist so that the second-moment matrix that includes the prediction is of the form (Cooley, 2004, 
equation 5-87) 
 

 ⎥
⎦

⎤
⎢
⎣

⎡
ω′

= −1ˆ p
a bC

CΩ
Ω , (18) 

then a correction factor cp, described in ‘The RESAN2-2k Program’ section, must be used. In 
equation 18, ( )( ) ( )( ) 2

** εσ−−= γθγθfYC gYE p , ( )( ) 22
*

1ω̂ ε
− σ−= γθgYE pp , and 

( ) ntrb 2121 Ωωω= , where  signifies matrix trace.  ( )Ktr
On the basis of the assumed structure of , Cooley (2004, p. 65) stated the Lagrange 

function as 
aω

 

                     ( ) ( ) ( ) ( )( )θθγθθ ˆ
2
1,, 22 SvSdvgvL p +ω−−
λ

++=λ α , (19) 

 
where critical value  is equal to 2

αd ( ) ( ) ( )pnSpntcp −−α θ̂2
2  for an individual prediction interval. 

As explained by Cooley (2004, p. 65), sometimes the second moment of , 
, can be estimated more easily than  for use in equation 19. In this case, the 

term  can replace the general weight ω

( )*γθgYp −
( )( 2

*γθgYE p − )
)

pω̂
( )( 22

* sgYE p
−− γθ p in equation 19. 

Iterative solution of the extreme value problem based on equation 19 is derived in 
appendix A using the same method as used for equation 8. The solution is given as  

 

( ) ( ) ( )( ) ( )( )
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 , (21) 1

1
1 +

−
+ λω= rprv

 
and equation 10. All of the developments following equation 10 for a confidence interval are 
used for a prediction interval. 

The RESAN2-2k Program 

The purpose of analyzing residuals is to test whether or not the assumptions made for 
nonlinear regression and uncertainty analysis seem to be violated (Cooley and Naff, 1990, p. 
167). RESAN2-2k focuses on detection of model and system types of intrinsic nonlinearity as 
defined by Cooley (2004, p. 35-36), as well as the traditional graphical examination of residuals 
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plots for lack of model fit and testing of residuals for indications of non-normality. More on the 
purposes, theory, and methods of residuals analysis is given in Draper and Smith (1998, chapters 
2, 7, and 8), Cooley and Naff (1990, chapter 5), Hill (1992, p. 56-66, 88-89), Hill (1994), Cooley 
(2004), and references cited in these works. 

A Test for Model Intrinsic Nonlinearity 

Model intrinsic nonlinearity causes confidence regions, confidence intervals, and 
prediction intervals to be too small unless they are corrected with a correction factor. Cooley 
(2004, section 5) showed that (1) the size of a confidence region is proportional to 

, where c( pnpFcr −α , )
))

r is the correction factor; (2) the size of a Scheffé interval is proportional 
to (( 21, pnpFcr −α ; (3) the size of an individual confidence interval is proportional to 

( )( ) 212
2 pntcc −α , where cc is the correction factor; and (4) the size of an individual prediction 

interval is proportional to ( )( ) 212
2 pntcp −α , where cp is the correction factor. The correction 

factors are defined by 
 

 
( )

( ) ( )pn
p

c
Iw

Irwr
r −σγ+σγ+σ

σγ+σγ+σ
=

εβε

εβε
422

422

ˆˆ
, (22) 

 ( ) ( )pn
c

Iw

Icwc
c −σγ+σγ+σ

σγ+σγ+σ
=

εβε

εβε
422

422

ˆˆ
, (23) 

and, for the form of prediction interval computed by UNC, 

 ( ) ( )pn
c

Iw

Iawa
p −σγ+σγ+σ

σγ+σγ+σ
=

εβε

εβε
422

422

ˆˆ
. (24) 

Variables contained in equations 22-24 are defined as follows:  is a scalar multiplier for the 
variance of the vector of system characteristics, , defined by 

2
βσ

β ( ) 2
ββσ= VβVar ;  is a scalar 

multiplier for the variance of the observation-error vector, , of order n, defined by 
; and   are component 

correction factors defined by Cooley (2004, section 5). (The subscripts r and c were added in the 
present report.) 

2
εσ

ε
( ) 2

εεσ= VεVar , , , , , ,ˆ ,ˆ 2424242
βεβεβεβ σγσγσγσγσγσγσγ waIcwcIrwrIw

4 and εσγ Ia

The factors examined by RESAN2-2k, , measure the importance of model 
intrinsic nonlinearity. Cooley (2004, p. 50) showed that . Thus, only  needs 
to be computed, and this factor is expressed by Cooley (2004, equation 6-3) as  

44  and ˆ εε σγσγ IrI
44 ˆ εε σγ−=σγ IIr

4ˆ εσγ I
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where  is the linear-model approximation of ( *0 γθf ) ( )*γθf  defined in Cooley (2004, equation 
5-104 and text preceding equation 6-2), ( )θγf ˆ

0  is the linear-model approximation of ( )θγf ˆ  
defined in Cooley (2004, equation 5-104 and text preceding equation 6-2), and I is the identity 
matrix. 

The last term of equation 25 is the expected value of the product of row vector 
 and its transpose. If Df in R is evaluated using , then  is 

always 0 (Cooley, 2004, p. 39). Also, if model intrinsic nonlinearity is absent, then R is constant 
(that is, the same for any set ) (Cooley, 2004, p. 39). Thus, a test for the importance of intrinsic 
nonlinearity in the denominators of the correction factors is to compare the estimate of the last 
term of equation 25, , where R is not computed using θ , with 
another appropriate term in equations 22-24. This term is obtained from equation 5-16 of Cooley 
(2004, p. 48), which shows that model intrinsic nonlinearity is negligible in the denominator of 
the correction factors if 

RωθγfY 2/1))ˆ(( ′− θ̂ ))ˆ((2/1 θγfYRω −

θ

))ˆ(())ˆ(( 2/12/1 θγfYRωωθγfY −′− ˆ

( ) ( ) 2224 ˆˆ εβεε σ−=σγ+σ−<<σγ apnbpn wI , where a and b are factors that 
equal 1 if , the inverse of the correct weight matrix for the Gauss-Markov method of 
weighted regression to find θ  (Cooley, 2004, section 4). Specifically,  

Ωω =−1b
ˆ

 

( ) ( )( ) ( ) ( )( ) ( )( ) pbtrbbtrpbbtra dmmmm RωΩωRωΩωR +== 21212121 ////  (26) 

and 

 ( ) ( )( ) nntrntrb dmmm +== 21212121 ωΩωΩωω . (27) 
 
Because  is estimated by s2

εσb 2 defined by (Cooley, 2004, p. 50) as 
 

 
( )
apn

Ss
−

=
θ̂2 , (28) 

 
( ) 2

εσ− apnb  is estimated by ( )θ̂S , where  
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 ( ) ( ))ˆ()ˆ()ˆ( θγfYωθγfYθ −
′

−=S . (29) 
 
Thus, the test is that  should be much smaller than ))ˆ(())ˆ(( 2/12/1 θγfYRωωθγfY −′− ( )θ̂S  if R 
is computed using some reasonable set of parameters  not equal to θ . A set of direct 
observations or initial estimates for  should work. If desired, vector 

θ ˆ

*θ ( ))ˆ(21 θγfYRω −  can be 
examined to determine where in observation space the model intrinsic nonlinearity is large. 

Because , the test also can be used to assess the importance of model 
intrinsic nonlinearity in the numerator of c

44 ˆ εε σγ−=σγ IIr

r, except that the test criterion should be changed. 
From Cooley (2004, p. 48) model intrinsic nonlinearity is negligible in the numerator of cr when 

2224
εβεε σ=σγ+σ<<σγ bapp wIr . The term  is estimated by 2

εσbap ( ) ( )apnapSaps −= θ̂2 , so the 
test is that  should be much smaller than ))ˆ(())ˆ(( 2/12/1 θγfYRωωθγfY −′− ( ) ( )apnapS −θ̂ . 
When a is unknown, the more conservative criterion ( ) ( )pnpS −θ̂  should be used. 

A Test for Model and System Types of Intrinsic Nonlinearity 

Cooley (2004, p. 38-39) showed that both the mean weighted residual 
 (where nii

/))ˆ((Σ 2/1 θγfYω − 2121  of row  is ωω ii ) and the slope of the plot of weighted residuals 
))ˆ((21 θγfYω −i  in relation to weighted model functions ( )θγfω ˆ21

i  should be small if the model 
 is adequate and both model and system types of intrinsic nonlinearity are small. Formal t 

tests could be used to determine the significance of these measures, but graphical examination as 
performed by Cooley (2004, section 7) on test problems and comparisons with synthetic residual 
sets as described next should be adequate to detect significant model and system types of 
intrinsic nonlinearity as well as significant model inadequacy as described in the references cited 
at the beginning of this section. 

)ˆ( θγf

A Test for Normality of the Weighted Residuals 

Examination of the probability plot of weighted residuals ( )( )θγfYω ˆ21 −i  will sometimes 
reveal obvious departures from normality. However, as discussed by Cooley and Naff (1990, p. 
168-170), departures from a standard normal distribution are expected for weighted residuals 
because they always are correlated and heteroscedastic. Under ideal conditions of no model or 
system intrinsic nonlinearity and zero-mean normal distributions of , Cooley (2004, p. 
38) showed that the weighted residuals have the normal distribution  

εβ  and 

 
 ( )( ) ( )( ) ( ) ( )( )2212121 ,~ˆ

εσ−−− bbbN RIωΩωRI0θγfYω . (30) 
 
If Gauss-Markov estimation is used so that , then equation 30 becomes Ωω =−1b
 
 ( )( ) ( )( )221 ,~ˆ

εσ−− bN RI0θγfYω , (31) 
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which is of the form of the distribution of standard linear-regression weighted residuals. 
The weighted residual distribution can be graphically compared with synthetic weighted 

residual distributions generated according to equation 30 (or 31) as described by Cooley and 
Naff (1990, p. 168-171) to determine whether or not the weighted residuals appear to have the 
specified normal distribution. However, a more precise test also can be used. To make the test, 
first synthetic weighted residuals are generated from equation 30 or 31 (with the estimate 

) as follows. 22 replacing εbσ s
 

 1. Standard normal deviates are generated from ( )2,~ sN I0u . Vector  is initialized as 
. 

Tu
uu =T

 2. If specified in the input, u is modified to be the synthetic, weighted, true error vector 
where L is the lower triangular Cholesky factor of  Luu ,=T ( ) ( ) 2121 bb ωΩω . (See 

Kitanidis (1997, p. 237-238).) 
 3. Vector  is modified according to equation 30 (or 31) to give , the set of 

synthetic, weighted residuals for realization k. 
Tu ( ) T

k uRId −=

 4. Steps 1-3 are repeated for a large number of realizations, M. 
 
Note that skipping step 2 yields synthetic weighted residuals distributed according to equation 31 
(with the estimate ). This step would be skipped if Gauss-Markov estimation 
were used or if 

22 replacing ε bσs
Ω  were unknown, in which case  would have to be estimated by 2

εbσ
( ) ( )pnS −θ̂  or a in the estimate  would have to be approximated using equation 76 in ‘The 

CORFAC-2k Program’ section of this report. 

2s

Next, the following quantities are computed: 
 

 ,∑=
k

k Mdd  (32) 

the mean n-vector over all M realizations,  
 

 , (33)  ⎥⎦
⎤

⎢⎣

⎡= ∑
k

k
i

k
i dds

 
the vector of sum of squared values of  over all realizations, and k

id
 

 ( ) ( )[ ]1−−= MddMs iiiv , (34) 

 
the sample standard deviation n-vector. 

A normal probability plot of vectors vd 2±  gives a band within which the weighted 
residuals usually might be expected to lie (Cooley, 2004, section 7). Even though ii vd 2±  
defines an approximate 95 percent individual confidence interval, interpretation of the plot is 
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limited because each interval is an individual one so that all intervals in the band cannot be 
interpreted simultaneously. A better test for normality is obtained as follows as a generalization 
of a test given by Shapiro and Francia (1972) and used by Hill (1992, p. 63). First, the grand 
mean is computed:  

 

 ∑=
i

i ndd , (35) 

 
Next the square of the correlation between synthetic weighted residuals for each realization k and 
the means over all realizations is obtained: 
  

 

( )
( )

.
22

2

∑ ∑ −⎟
⎠
⎞

⎜
⎝
⎛ ∑−

⎟
⎠

⎞
⎜
⎝

⎛
∑ −⎟

⎠
⎞

⎜
⎝
⎛ ∑−

=

i i
i

j

k
j

k
i

i
i

j

k
j

k
i

k

ddndd

ddndd
c  (36) 

 
Then, all values of ck are ordered from smallest to largest. 

By definition, the probability that ck has some specified value cs or a smaller value is  
 

 ( )∑ ≤=
k

k
s MccIP , (37) 

 
where ( ) k

s
k

s
k

s ccIccIccI ≤=>=≤   when1 and   when0 functionindicator   theis . Therefore, a 
95 percentile is given by ( ) ( )Lint and 950int  where, 1

1 M.kcc k
s ==  indicates truncation to the 

nearest integer. Similar 90 and 99 percentiles also can be computed. These percentiles should be 
compared to cd, the square of the correlation between weighted residuals ( )( ) ˆˆ 21 θγfYωe −= ii  and 
the means id , which is 
 

 

( )

( )
. 

ˆˆ

ˆˆ

2
2

2

∑ ∑∑

∑ ∑

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=

i i
i

j
ji

i
i

j
ji

d

ddnee

ddnee
c  (38) 

The comparison will tell if the weighted residuals are significantly different from the specified 
normal distribution at some predetermined level of significance equal to 100 minus the selected 
percentile. Also, by letting , the probability P of cds cc = d or a smaller value can be obtained, 
which is a more direct test. 
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The BEALE2-2k Program 

The purpose of BEALE2-2k is to compute measures of total model nonlinearity, model 
intrinsic nonlinearity, and model combined intrinsic nonlinearity in the vicinity of θ . These 
measures relate to component correction factors  that compose 
correction factors c

ˆ
4444  and ,  , ,ˆ εεεε σγσγσγσγ IaIcIrI

r, cc, and cp. 

A Measure of Average Total Model Nonlinearity 

Total model nonlinearity is the sum of model intrinsic nonlinearity and parameter effects 
nonlinearity, the latter of which is nonlinearity that can be eliminated by some generally 
unknown transformation of parameters ( )θφ  (Draper and Smith, 1998, p. 528-529). In effect, 
intrinsic nonlinearity is the smallest possible total model nonlinearity for any transformation of 
parameters. The measure of total nonlinearity was developed to determine when linear theory 
can be used to compute confidence regions (Beale, 1960; Guttman and Meeter, 1965; Cooley and 
Naff, 1990, p. 187-188). 

Cooley and Naff (1990, p. 187-188) defined a measure of average total nonlinearity as a 
combination of measures developed by Beale (1960) and Linssen (1975). For reasons discussed 
by Cooley (2004, p. 85) the measure used in this report was altered slightly from the one defined 
by Cooley and Naff (1990). It is defined as the average weighted sum of squared discrepancies 
between nonlinear and linear model values on the edge of the linear probability region having 
diameter  and centered on the drift set of parameters 2

εσapb θ . Therefore, the measure of 
average total model nonlinearity is calculated using estimates as (Cooley, 2004, p. 87) 

 

 

( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( ) ( ),21

21ˆ

2

1
002

2

1
002

∑ −′−=

∑ −′−=

=

=

p

l
lmlmmlmlm

p

l
llll

p
aps

p
aps

N

γθfγθfωγθfγθf

γθfγθfωγθfγθf
 (39) 

 
where  indicate linear model values, and the sets ( ) ( )LL m00  and ff ,2,,2,1 , pll L=θ  are 
calculated as given by Cooley and Naff (1990, p. 189): 
 
 ( ) lfωDfDθθ ′′λ+=

−1ˆˆˆ
l , (40) 

 
in which 
 

 ( )
21

1

2

ˆˆ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

′′
±=λ −

lfωDfDl

aps
 (41) 
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and l is the row p-vector 

 [ ]0    1    0  0 LL=l , (42) 
 
with the 1 being in column l. Sensitivity matrix . Note that the diameter of 
the linear confidence region  can be written in terms of c

θfD ˆat  evaluated is ˆ
2aps r as evaluated in CORFAC-2k 

(which assumes no model intrinsic nonlinearity) as 
 

 
( ) ( ) ( ) ( )

pn
Spc

pn
Sp

apn
apn

apn
apSaps r −

=
−−

−
=

−
=

θθθ ˆˆˆ
2 . (43) 

 
If Ω  is unknown so that a cannot be calculated using equation 26, then a may be estimated using 
equation 76 derived in ‘The CORFAC-2k Program’ section. 

By analogy with the standard criteria for ranking nonlinearity first given by Beale (1960, 
p. 60) and later augmented by Cooley and Naff (1990, p. 189), we consider the model to be 
highly nonlinear if  so that the numerator of  is greater than the diameter  of the 
confidence region; nonlinear if ; moderately nonlinear if ; and 
essentially linear if . Linear theory for computing confidence regions seems to produce 
good approximate results when  (Cooley and Naff, 1990, p. 189). 

1ˆ >N N̂ 2aps
09.0ˆ1 >≥ N 01.0ˆ09.0 >≥ N

01.0ˆ ≤N
09.0ˆ ≤N

A Measure of Average Model Intrinsic Nonlinearity 

Average model intrinsic nonlinearity is assessed by the measure  modified by 
Cooley (2004, p. 85) from forms given earlier by Beale (1960) and Linssen (1975). As for the 
measure of total nonlinearity, this measure is defined in terms of the linear probability region 
centered on 

minN̂

θ  and having diameter . It is calculated using the same estimates and linear 
confidence region as used for . Therefore, the model intrinsic nonlinearity measure is 
calculated as (Cooley, 2004, p. 85) 

2
εσapb

N̂

 

 

( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( )( ( ) ( )( )

( ) ) ,)2(ˆˆ
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2ˆˆ1ˆ

2

1
002
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1
002min

p
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N

lddld

p

i
lmlmlmmlmlmlm

p

l
llllll
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ψfDγθfγθfωψfDγθfγθf

′
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∑ −−
′

−−=

∑ −−
′

−−=

=

=

 (44) 

where  is computed using equations 40-42, and lθ
 

  (45) 
( ) ( ) ( )( )

( ) ( ) ( )( ).ˆˆˆ

ˆˆˆ

0

1
0

1

lmlmmm

lll

γθfγθfωfDfωDfD

γθfγθfωfDfωDfDψ

−′′=

−′′=
−

−
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The measure  is similar to the second expected value in  given by equation 

25. Hence, the measure provides another test of the importance of model intrinsic nonlinearity in 
c

min
2 N̂aps 4ˆ εσγ I

r, cc, and cp in addition to the test using the term  given after 
equation 29. By analogy with the former test,  should be much smaller than 

))ˆ(())ˆ(( 2/12/1 θγfYRωωθγfY −′−

min
2 N̂aps ( )θ̂S  when 

applied as a test of the size of  and should be much smaller than  when applied as a 
test of the size of . Therefore, the test criterion for  is that  should be much 
smaller than (n−ap)/(ap), and the test criterion for  is that  should be much smaller 
than 1. The ranking used to classify nonlinearity for  also can be used for  because  
is just the smallest possible value for . 

4ˆ εσγ I
2aps

4
εσγ Ir

4ˆ εσγ I minN̂
4
εσγ Ir minN̂

N̂ minN̂ minN̂
N̂

A Measure of Model Combined Intrinsic Nonlinearity for Confidence Intervals  

Model combined intrinsic nonlinearity affects cc because  is a component of this 
correction factor. Cooley (2004, equation 6-20) expressed the component correction factor  
as 

4
εσγ Ic

4
εσγ Ic
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⋅
 (46) 

 
where ( ) ,~or    with, * θθθγθ =g  is a model prediction for which a confidence interval is to be 
computed,  is the linearized approximation of it analogous to , and θ( ) 0 γθg )(0 γθf ~

 is the 
weighted regression estimate of  that is constrained so that *θ ( ) ( )θγγθ ~

* gg = . 
Cooley (2004, p. 86-87) developed a measure of model combined intrinsic nonlinearity, 

, similar to the second expected value in equation 46. As for , the measure is defined 
in terms of a likelihood region centered on 

minM̂ minN̂
θ , but this time having diameter , where 2

εσξb
 

 ( ) ( ) ( ) ( )( ) QQQQQωΩωQQQQωΩωQ ′′+′=′′=ξ bbbbb ddmmmmm
21212121 . (47) 
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Thus, it is calculated using estimates as 
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 (48) 

 
where  is given by Cooley (2004, p. 87) as lθ
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in which the carets over f, g, and Q indicate evaluation using , θθ ˆ=
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and 
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 (51) 

 
Note that the diameter of the linear likelihood region  can be written in terms of c2sξ c as 
evaluated in CORFAC-2k (which assumes no model combined intrinsic nonlinearity) as 
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QQ
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 (52) 

 
If Ω  is unknown so that cc cannot be exactly computed, then the approximate bound for cc given 
by equation 83 derived in the sub-section titled ‘The CORFAC-2k Program’ can be used. In all 
cases, Q is replaced with  to make the calculations. Q̂

Note that  as defined by equation 46 contains . A measure similar to the sum 
 uses two components in addition to . These are (Cooley, 2004, p. 86) 

4
εσγ Ic

4ˆ εσγ I

( ) 4ˆ εσγ+γ IIc minM̂
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The measure of model combined intrinsic nonlinearity related to the sum is given by the 
maximum in absolute value of  and  (Cooley, 2004, p. 87). UBM ˆ2ˆ

min + LBM ˆ2ˆ
min −

From Cooley (2004, equation 5-49), model combined intrinsic nonlinearity is negligible 
in the correction factor cc if ( ) ( ) 222121224 / εεβεε σξ=′σ′=σγ+σ<<σγ bbbbwcIc QQQωΩωQ . Thus, 
( ) ( )24ˆ εε σξσγ+γ bIIc  should be much greater than ( ) ( ) ( ) ξ+ξ=σξσ+σξ εεε apbapbb 222 , which has 
a value greater than 1, so that, as a conservative test criterion,  and UBM ˆ2ˆ

min + LBM ˆ2ˆ
min −  

should both be much less than 1. It is likely that the same ranking used to classify nonlinearity 
for  also can be used to classify model intrinsic nonlinearity for its measure, although this 
ranking might be conservative in the present instance. 

N̂

Cooley (2004, p. 66) showed that when model intrinsic nonlinearity and model combined 
intrinsic nonlinearity both are small, standard linear confidence intervals are accurate 
approximations of nonlinear intervals. Thus, because  measures the magnitude of these two 
sources of nonlinearity,  can be used to indicate when standard linear confidence intervals 
can be used. On the basis of preliminary results given by Cooley (2004, section 7), linear 
confidence intervals should be good approximations when . 

minM̂
minM̂

01.0ˆ
min ≤M

A Measure of Model Combined Intrinsic Nonlinearity for Prediction Intervals  

The development and measure of model combined intrinsic nonlinearity for prediction 
intervals is analogous to the development and measure for confidence intervals. The measure for 
prediction intervals was not explicitly derived by Cooley (2004) but follows from the equations 
derived for confidence intervals with some added terms obtained from equations 6-50 - 6-55 of 
Cooley (2004, p. 84-85). For the prediction intervals calculated by UNC, the diameter of the 
likelihood region analogous to , where 22  is ss aξξ aξ  is defined using equation 7-12 from Cooley 
(2004, p. 113) as  
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We assume in this report that errors ( )*γθgYp −  in predictions are not correlated with errors 

 in direct information so that ( *γθfY dd − ) 0C =d . The three measures analogous to equations 
48, 53, and 54 are 
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and 
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where  is obtained from equation H-12 in Cooley (2004, p. 205) as lθ
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and remaining variables are obtained straightforwardly from equations 6-51 - 6-55 in Cooley 
(2004, p. 84-85) as 
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The criteria for assessing the importance of model combined intrinsic nonlinearity in cp 

are completely analogous to the criteria pertaining to cc; equations 5-93 and 7-12 of Cooley 
(2004) replace equation 5-49 of Cooley (2004) in the development. Thus,  and a

U
a BM ˆ2ˆ
min +

a
L

a BM ˆ2ˆ
min −  should be much less than 1, and the ranking used to classify nonlinearity for  

can again be used to classify model combined nonlinearity for its measures. 
N̂

The measure  can be used in the same way as  was used for confidence 
intervals to indicate when standard linear prediction intervals should be accurate approximations 
of nonlinear ones. Thus, linear prediction intervals should be good approximations of nonlinear 
ones when . 

aM min
ˆ

minM̂

01.0ˆ
min ≤aM

The CORFAC-2k Program 

The purpose of CORFAC-2k is to compute correction factors cr, cc, and cp, together with 
components of them, assuming that model intrinsic nonlinearity and model combined intrinsic 
nonlinearity are negligible. The component correction factors , , , and  
are equal to zero when weight matrix  is equal to the inverse of the matrix 

2ˆ βσγ w
2 βσγ wr

2
βσγ wc

2
βσγwa

ω Ω . When Ω  is 
unknown, approximations and bounds are developed for the correction factors. 

Calculation of the Correction Factors When Ω Is Known 

Component correction factor  is defined using equations 5-10 and F-133 of Cooley 
(2004) as 

2ˆ βσγ w
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 ( ) ( )( ) 22 11ˆ εβ σ−−−=σγ pbanbw , (64) 

 
and  is defined using equations 5-12 and F-135 of Cooley (2004) as 2

βσγwr

 
 ( ) 22 1 εβ σ−=σγ pbawr , (65) 

 
where a and b are given by equations 26 and 27 and  (Cooley, 2004, p. 52). Note that if 

, and if . Correction factor c
1≥a

0σγ̂ then ,1 2
β ≤≥ wb 2

β
2
β σγσγ̂ then ,1 wrwb −== r is obtained by 

combining equations 64 and 65 according to equation 22, assuming  and  are both 
zero, to get 

4ˆ εσγ I
4
εσγ Ir

 

 
( )

apn
apncr −

−
= . (66) 

 
Note from equations 26 and 27 that if  is proportional to, but not equal to, , then ω 1−Ω 1=a , but 

 and component correction factors from equations 64 and 65 are both nonzero. However, b 
cancels when obtaining equation 66 so that  only has to be proportional to  for c

1≠b
ω 1−Ω r to be 

equal to 1. Also note that at least when model intrinsic nonlinearity is negligible, cr≥1, so that 
uncorrected confidence regions and uncorrected Scheffé intervals would be too small unless 

. To compute c1−∝ Ωω r, a and thus Ω  have to be known. 
Component correction factor  is defined using equation F-146 of Cooley (2004, p. 

187) and equation 47 as 

2
βσγwc

 
 . (67) 22 )1( εβ σ−ξ=σγ bwc

 
Variable  given by equation 52 is not necessarily greater than 1, so  is not necessarily 
greater than zero. Correction factor c

ξ 2
βσγwc

c is obtained by combining equations 64 and 67 according to 
equation 23, assuming  and  are both zero, to get  4ˆ εσγ I

4
εσγ Ic

 

 
( )

apn
pncc −

ξ−
= , (68) 

 
where again ω only has to be proportional to Ω  for cc to equal 1. Matrix Ω  has to be known in 
order to compute cc. 

Finally, component correction factor  is defined using equation 5-93 of Cooley 
(2004, p. 63) and equation 55 as 

2
βσγwa

 
 ( ) 22 1 εβ σ−ξ=σγ awa b . (69) 
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As for equation 67,  is not necessarily greater than 1, so  is not necessarily greater than 
zero. Correction factor c

aξ 2
βσγwa

p is obtained by combining equations 64 and 69 according to equation 
24, assuming  and  are both zero, to get 4ˆ εσγ I

4
εσγ Ia

 
( )

apn
pnc a

p −
ξ−

= , (70) 

 
which behaves like cc does. However, cp can differ from 1 even when  is equal to  because 
of the term involving C in equation 55. 

ω 1−Ω

Approximate Calculation of the Correction Factors When Ω Is Unknown 

When am a ξξ  and , , unknown, is Ω  must be approximated. To obtain the approximations, 
we set  equal to the diagonal weight matrix  composed of the inverses of the diagonals of 

, we let , and we set 
mω mω̂

mΩ
1ˆ −== ddd Ωωω pω  equal to pω̂ . (Usually,  will only be an 

approximation of the inverse of the diagonals of . This is discussed briefly later in this 
section.) Then we make use of approximations from equations 5-20, 5-56, and 5-117 of Cooley 
(2004). To approximate a we use equation 5-20 in equation 5-10 of Cooley (2004), noting that 
b=1 and  so that equation 5-20 need only be applied to the model function partition. 
Therefore, 

mω̂
mΩ

1−= dd Ωω

 

 ( ) ( )( )( ) ( ) ( ) apntcstctrcctr dmmddmmmm −=++−=−++−− 1ˆ1ˆ RI1IRI , (71) 

 
where c is an effective correlation,  is an m1 mm nn ×  matrix of 1’s, partitions of R̂  are partitions 
of R computed using , and the traces are evaluated as ω̂
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In equations 72-74,  is an element of ijr̂ R̂  and ijδ  is the Kronecker delta ( jiij ==δ   when1 and 

). jiij ≠=δ   when0
Equation 71 can be solved for c by making use of the fact that pntt dm −=+ . The result 

is 
 

 26



Chapter 2. THEORY 

 
( )

mm st
pac

−
−

=
1

, (75) 

 
which can serve as a definition of c. Note that if . The condition  has always 
been found to hold. If c is presumed known, then equation 75 can be solved for a to get 

0 , ≥> cst mm mm st >

 

 ( ) 1+−= mm st
p
ca , (76) 

 
which has a lower bound of a=1 when c=0 and an upper bound of ( ) pst mm −+1  when c=1. By 
assuming a reasonable upper limit for c, ce, an approximate upper limit for a can be computed 
using equation 76. 

The variable ξ  can be bounded using equation 5-56 from Cooley (2004, p. 56). However, 
a more refined approximation can be obtained as follows. From equation 5-56 from Cooley 
(2004) and the fact that the approximation need not be applied for the direct information, 

 

 ( ) ( ) QQQQQQQQQωΩωQ ˆˆˆˆˆˆˆˆˆˆˆˆ 2121 ′′+≤′′+′=ξ ddmxddmmmmm V , (77) 
 
where 
 

  (78) 
( )

2

max ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

si
mismx QV

 
and the notation indicates the maximum of either the squared sum of positive values of the Qmi’s 
or the squared sum of negative values of the Qmi’s (Cooley, 2004, p. 55-56). Also, if  is 
diagonal so that , then  so that . Therefore, a 
value of  always exists so that  

mΩ
mmmm IωΩω =2/12/1 ˆˆ mmmmmmm QQQωΩωQ ˆˆˆˆˆˆ 2/12/1 ′=′ 1=ξ

1≤ec
 

 ( )( ) QQQQQQ ˆˆˆˆˆˆ1 ′′++′−≤ξ ddmxemme Vcc . (79) 
 
It is almost certain that equation 79 with ce<1 would produce a closer bound than equation 77. 

Finally,  is bounded using equation 5-117 of Cooley (2004, p. 68) and a development 
completely analogous to the one used to obtain equation 79 to obtain 

aξ

 

 ( )( )( ) ( )11 ˆˆˆˆˆˆˆˆ1 −− ω+′′++ω+′−≤ξ pddmxaepmmea Vcc QQQQQQ , (80) 

 
where Vmxa is evaluated using equation 78 as 
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Correction factors cr, cc, and cp are approximated by letting c = ce and using equations 71, 

76, 79, and 80 to get 
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and 
 

 
( )( )

( ) dmeme

ddmxaepmme

p
p tsctc
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≈
−
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QQ
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Note that if ce=0 is correct, then cr=1, cc=1, and cp=1, which also are correct. If ce=1, then cr, cc, 
and cp, attain their maximum values, which could be very large because the denominators could 
be very small. For the correction factors examined thus far in tests by the authors of this report, 
ce=0.8 has yielded bounds for all values of cc and cp. This value of ce also has yielded bounds for 
most values of cr and has yielded good approximations of cr for the remainder. 

For field problems  will only be an approximation of the matrix of inverses of the 
diagonal elements of . The results of example 2 of Cooley (2004, section 7) suggest that a 
reasonable estimate of  yields very little error in the correction factors. Further work by the 
senior author suggests that use of the approximation for  obtained for the Tude aa case 
studied by Christensen and Cooley (1999b) also yields very little error. It appears that careful 
hydrogeologic work can yield a satisfactory estimate for . 

mω̂
mΩ

mω̂
mω̂

mω̂

Approximate Calculation of the Correction Factors When Ω Is Partly Known 

In order to make the approximations in equations 71, 76, 79, and 80, we assumed the 
matrix  to be similar to a correlation matrix so that all elements have magnitudes ≤1 
(Cooley, 2004, p. 48-49). This implies that  is diagonal with elements equal to the inverses of 
the diagonal elements of . Matrix  has the form 

2/12/1 ˆˆ mmm ωΩω
mω̂

mΩ mΩ mm VV +ε , where  is the diagonal block 
in  for model functions and , which is the 
model-error second-moment matrix for model functions divided by  (Cooley, 2004, p. 18-19). 
Observations such as streamflow gains and losses may have measurement errors that have 

mεV
εV 2

** /))()())(()(( εσ′−−= γθfβfγθfβfV mmmmm E
2
εσ
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known correlation so that  is not diagonal. In this case, assuming  to be diagonal would 
result in a loss of information. If  is known, then to preserve this information  should be 
written in the form 

mεV mω̂
mεV mω̂

 
 , (85) 1)(ˆ −

ε += mmm DVω
 
which gives  the form , where D2/12/1 ˆˆ mmm ωΩω 2/1

εε
2/1

ε ))(()( −− +++= mmmmmmm DVVVDVC m is 
the diagonal matrix of diagonal elements of Vm. Unless  is diagonal, CmεV m does not have a 
correlation-like form. However, as  approaches 0, CmεV m approaches the matrix , 
which is similar to a correlation matrix; as V

2/12/1 −−
mmm DVD

m approaches 0, Cm approaches I, the identity matrix; 
and if  is diagonal, CmεV m has the standard form. Thus, Cm has the form assumed for the 
approximations in the limits. We assume that elements of Cm have magnitudes ≤1 (at least in 
final effect) for all matrices , so that equations 82, 83, and 84 can be used to compute 
correction factors when  is defined by equation 85. (This assumption held in tests made 
during development of the computer code for this report.) Note, however, that as in the standard 
case where  is diagonal, D

mεV
mω̂

mω̂ m is approximate because Vm is unknown.  
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